edexcel 쁯

Mark Scheme (Results)
Summer 2015

Pearson Edexcel GCE in
Core Mathematics C1 (6663/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA041193
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $\mathrm{x}=\ldots$
Solving $a x^{2}+b x+c=0: \quad a\left(x \pm \frac{b}{2 a}\right)^{2} \pm p \pm \frac{c}{a}=0, \quad p \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme		Marks
3.	$y=4 x^{3}-\frac{5}{x^{2}}$		
(a)	$12 x^{2}+\frac{10}{x^{3}}$	M1: $x^{n} \rightarrow x^{n-1}$ e.g. Sight of x^{2} or x^{-3} or $\frac{1}{x^{3}}$ A1: $3 \times 4 x^{2}$ or $-5 \times-2 x^{-3}$ (oe) (Ignore +c for this mark) A1: $12 x^{2}+\frac{10}{x^{3}}$ or $12 x^{2}+10 x^{-3}$ all on one line and no $+\mathrm{c}$	M1A1A1
	Apply ISW here and award marks when first seen.		
			(3)
(b)	$x^{4}+\frac{5}{x}+c$ or $x^{4}+5 x^{-1}+c$	M1: $x^{n} \rightarrow x^{n+1}$. e.g. Sight of x^{4} or x^{-1} or $\frac{1}{x^{1}}$ Do not award for integrating their answer to part (a) A1: $4 \frac{x^{4}}{4}$ or $-5 \times \frac{x^{-1}}{-1}$ A1: For fully correct and simplified answer with +c all on one line. Allow $x^{4}+5 \times \frac{1}{x}+c$ Allow $1 x^{4}$ for x^{4}	M1A1A1
	Apply ISW here and award marks when first seen. Ignore spurious integral signs for all marks.		
			(3)
			(6 marks)

Question Number	Scheme		Marks
4(i).(a)	$U_{3}=4$	cao	B1
			(1)
(b)	$\sum_{n=1}^{n=20} U_{n}=4+4+4 . \ldots \ldots \ldots .+4 \text { or } 20 \times 4$	For realising that all 20 terms are 4 and that the sum is required. Possible ways are $4+4+4 \ldots . .+4$ or 20×4 or $\frac{1}{2} \times 20(2 \times 4+19 \times 0)$ or $\frac{1}{2} \times 20(4+4)$ (Use of a correct sum formula with $n=20, a=4$ and $d=0$ or $n=20$, $a=4$ and $l=4$)	M1
	$=80$	cao	A1
	Correct answer with no working scores M1A1		
	$V_{3}=3 k, \quad V_{4}=4 k$		(2)
(ii)(a)		May score in (b) if clearly identified as V_{3} and V_{4}	B1, B1
			(2)
(b)	$\sum_{n=1}^{n=5} V_{n}=k+2 k+3 k+4 k+5 k=165$ or $\frac{1}{2} \times 5(2 \times k+4 \times k)=165$ or $\frac{1}{2} \times 5(k+5 k)=165$	Attempts V_{5}, adds their $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}$ AND sets equal to 165 or Use of a correct sum formula with $a=k, d=k$ and $n=5$ or $a=k, l=5 k$ and $n=5$ AND sets equal to 165	M1
	$15 k=165 \Rightarrow k=.$.	Attempts to solve their linear equation in k having set the sum of their first 5 terms equal to 165. Solving $V_{5}=$ 165 scores no marks.	M1
	$k=11$	cao and cso	A1
			(3)
			(8 marks)

Question Number	Scheme		Marks
6(a)	$\left(x^{2}+4\right)(x-3)=x^{3}-3 x^{2}+4 x-12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{x^{3}-3 x^{2}+4 x-12}{2 x}=\frac{x^{2}}{2}-\frac{3}{2} x+2-6 x^{-1}$	M1: Attempt to divide each term by $2 x$. The powers of x of at least two terms must follow from their expansion. Allow an attempt to multiply by $2 x^{-1}$ A1: Correct expression. May be un-simplified but powers of x must be combined $\text { e.g. } \frac{x^{2}}{2} \text { not } \frac{x^{3}}{2 x}$	M1A1
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=x-\frac{3}{2}+\frac{6}{x^{2}} \\ & \text { oe e.g. } \frac{2 x^{3}-3 x^{2}+12}{2 x^{2}} \end{aligned}$	ddM1: $x^{n} \rightarrow x^{n-1}$ or $2 \rightarrow 0$ Dependent on both previous method marks.	ddM1A1
		A1: $x-\frac{3}{2}+\frac{6}{x^{2}}$ oe and isw Accept $1 x$ or even $1 x^{1}$ but not $\frac{2 x}{2}$ and not x^{0}. If they lose the previous A1 because of an incorrect constant only then allow recovery here and in part (b) for a correct derivative.	
			(5)
	See appendix for alternatives using product/quotient rule		
(b)	At $x=-1, y=10$	Correct value for y	B1
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)-1-\frac{3}{2}+\frac{6}{1}=3.5$	M1: Substitutes $x=-1$ into their expression for $\mathrm{d} y / \mathrm{d} x$ A1: 3.5 oe cso	M1A1
	$y-10^{\prime}={ }^{\prime} 3.5$ ' $(x--1)$	Uses their tangent gradient which must come from calculus with $x=-1$ and their numerical y with a correct straight line method. If using $y=m x+c$, this mark is awarded for correctly establishing a value for c.	M1
	$2 y-7 x-27=0$	$\pm k(2 y-7 x-27)=0$ cso	A1
			(5)
			(10 marks)

Question Number	Scheme		Marks
7.(a)	$\left(4^{x}=\right) y^{2}$	Allow y^{2} or $y \times y$ or " y squared" $" 4^{x}=$ " not required	B1
	Must be seen in part (a)		
			(1)
(b)	$8 y^{2}-9 y+1=(8 y-1)(y-1)=0 \Rightarrow y=\ldots$ or $\left(8\left(2^{x}\right)-1\right)\left(\left(2^{x}\right)-1\right)=0 \Rightarrow 2^{x}=\ldots$	For attempting to solve the given equation as a $\mathbf{3}$ term quadratic in y or as a 3 term quadratic in 2^{x} leading to a value of y or 2^{x} (Apply usual rules for solving the quadratic - see general guidance) Allow x (or any other letter) instead of y for this mark e.g. an attempt to solve $8 x^{2}-9 x+1=0$	M1
	$2^{x}($ or $y)=\frac{1}{8}, 1$	Both correct answers of $\frac{1}{8}$ (oe) and 1 for 2^{x} or y or their letter but $\underline{\text { not } \boldsymbol{x}}$ unless 2^{x} (or y) is implied later	A1
	$x=-3 \quad x=0$	M1: A correct attempt to find one numerical value of x from their 2^{x} (or y) which must have come from a 3 term quadratic equation. If logs are used then they must be evaluated.	M1A1
		A1: Both $x=-3$ and/or $x=0$ May be implied by e.g. $2^{-3}=\frac{1}{8} \quad$ and $\quad 2^{0}=1$ and no extra values.	
			(4)
			(5 marks)

Special case: Use of $4 x^{3}-9 x$ for the curve gives $(-2,-14)$ and ($1,-5$) in part (c). Allow this to score a maximum of B0B0M1A1 as a special case in part (c) as the length AB comes from equivalent work.

Questio Number	Scheme									Marks
9.(a)	$32000=17000+(k-1) \times 1500 \Rightarrow k=\ldots$					Use of 32000 with a correct formula in an attempt to find k. A correct formula could be implied by a correct answer.				M1
	($k=$) 11					Cso (Allow $n=11$)				A1
	Accept correct answer only.									
	$\begin{aligned} & 32000=17000+1500 k \Rightarrow k=10 \text { is M0A0 (wrong formula) } \\ & \frac{32000-17000}{1500}=10 \therefore k=11 \text { is M1A1 (correct formula implied) } \end{aligned}$									
	Listing: All terms must be listed up to 32000 and 11 correctly identified. A solution that scores 2 if fully correct and 0 otherwise.									
										(2)
(b)	$\begin{gathered} \text { M1: } \\ S=\frac{k}{2}(2 \times 17000+(k-1) \times 1500) \text { or } \\ \frac{k}{2}(17000+32000) \\ S=\frac{k-1}{2}(2 \times 17000+(k-2) \times 1500) \text { or } \\ \frac{k-1}{2}(17000+30500) \\ \text { A1: } \\ \frac{1}{2}(2 \times 17000+10 \times 1500) \text { or } \frac{11}{2}(17000+32000) \\ S=\frac{10}{2}(2 \times 17000+9 \times 1500) \text { or } \\ \frac{10}{2}(17000+30500) \\ (=269500 \text { or } 237500) \\ \hline \end{gathered}$						M1: Use of correct sum formula with their integer $n=k$ or $k-1$ from part (a) where $3<k<20$ and $a=$ 17000 and $d=1500$. See below for special case for using $\boldsymbol{n}=20$.			M1A1
							A1: Any correct unsimplified numerical expression with $n=11$ or $n=10$			
	$32000 \times \alpha$					$32000 \times \alpha$ where α is an integer and $3<\alpha<18$				M1
	$\begin{gathered} 288000+269500=557500 \\ \text { or } \\ 320000+237500=557500 \end{gathered}$					M1: Attempts to add their two values. It is dependent upon the two previous M's being scored and must be the sum of 20 terms i.e.$\alpha+k=20$				ddM1A1
	Special Case: If they just find $S_{20}(\mathbf{(6 2 5} \mathbf{0 0 0})$ in (b) score the first M1 otherwise apply the scheme.									
										(5)
										(7 marks)
Listing:										
n	1	2	3	4	5	6	7	8	9	10
u_{n}	17000	18500	20000	21500	23000	24500	26000	27500	29000	30500
n	11	12	13	14	15	16	17	18	19	20
u_{n}	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000
Look for a sum before awarding marks. Award the M's as above then A2 for 557500 If they sum the 'parts' separately then apply the scheme.										

Question Number	Scheme		Marks
10(a)	$\mathrm{f}(x)=x^{\frac{3}{2}}-\frac{9}{2} x^{\frac{1}{2}}+2 x(+c)$	M1: $x^{n} \rightarrow x^{n+1}$	M1A1A1
		A1: Two terms in x correct, simplification is not required in coefficients or powers	
		A1: All terms in x correct. Simplification not required in coefficients or powers and +c is not required	
	Sub $x=4, y=9$ into $\mathrm{f}(x) \Rightarrow c=\ldots$	M1: Sub $x=4, y=9$ into $\mathrm{f}(x)$ to obtain a value for c. If no $+c$ then M0. Use of $x=9, y=4$ is M0.	M1
	$(\mathrm{f}(x)=) x^{\frac{3}{2}}-\frac{9}{2} x^{\frac{1}{2}}+2 x+2$	Accept equivalents but must be simplified e.g. $\mathrm{f}(x)=x^{\frac{3}{2}}-4.5 \sqrt{x}+2 x+2$ Must be all 'on one line' and simplified. Allow $x \sqrt{x}$ for $x^{\frac{3}{2}}$	A1
			(5)
(b)	Gradient of normal is $-\frac{1}{2} \Rightarrow$ Gradient of tangent $=+2$	M1: Gradient of $2 y+x=0 \text { is } \pm \frac{1}{2}(m) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{ \pm \frac{1}{2}}$	M1A1
	The A1 may be implied by $\frac{-1}{\frac{3 \sqrt{x}}{2}-\frac{9}{4 \sqrt{x}}+2}=-\frac{1}{2}$		
	$\frac{3 \sqrt{x}}{2}-\frac{9}{4 \sqrt{x}}+2=2 \Rightarrow \frac{3 \sqrt{x}}{2}-\frac{9}{4 \sqrt{x}}=0$	Sets the given $\mathrm{f}^{\prime}(x)$ or their $\mathrm{f}^{\prime}(x)$ $=$ their changed m and not their m where m has come from $2 y+x=0$	M1
		$\times 4 \sqrt{x}$ or equivalent correct algebraic processing (allow sign/arithmetic errors only) and attempt to solve to obtain a value for x. If $\mathrm{f}^{\prime}(x) \neq 2$ they need to be solving a three term quadratic in \sqrt{x} correctly and square to obtain a value for x. Must be using the given $\mathrm{f}^{\prime}(x)$ for this mark.	M1
	$x=1.5$ $x=\frac{3}{2}(1.5)$ Acc If any 'extra'	pt equivalents e.g . $x=\frac{9}{6}$ alues are not rejected, score A0.	A1
			(5)
	Beware $\frac{-1}{\frac{3 \sqrt{x}}{2}-\frac{9}{4 \sqrt{x}}+2}=-\frac{1}{2} \Rightarrow \frac{-2}{3 \sqrt{x}}+\frac{4 \sqrt{x}}{9}-\frac{1}{2}=-\frac{1}{2}$ etc. leads to the correct answer and could score M1A1M1M0(incorrect processing)A0		
			(10 marks)

Appendix			
Way 2 Quotient	$\left(x^{2}+4\right)(x-3)=x^{3}-3 x^{2}+4 x-12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x\left(3 x^{2}-6 x+4\right)-2\left(x^{3}-3 x^{2}+4 x-12\right)}{(2 x)^{2}}$	2)M1: Correct application of quotient rule$\|$	M1A1
	$\begin{array}{lllll} 4 x^{3} & 6 x^{2} & 24 & 3 & 6 \end{array}$	M1: Collects terms and divides by denominator. Dependent on both previous method marks.	ddM1A1
	$\begin{aligned} & =\frac{1}{4 x^{2}}-\frac{1 x^{2}}{4 x^{2}}=x-\frac{-}{2}+\frac{0}{x^{2}} \\ & \text { oe e.g. } \frac{2 x^{3}-3 x^{2}+12}{2 x^{2}} \end{aligned}$	A1: $x-\frac{3}{2}+\frac{6}{x^{2}}$ oe and isw Accept $1 x$ or even $1 x^{1}$ but not $\frac{2 x}{2}$ and not x^{0}.	
Way 3 Product	$y=\left(\frac{x}{2}+\frac{2}{x}\right)(x-3)$ or $\left(x^{2}+4\right)\left(\frac{1}{2}-\frac{3}{2 x}\right)$	Divides one bracket by $2 x$	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-3)\left(\frac{1}{2}-\frac{2}{x^{2}}\right)+\left(\frac{x}{2}+\frac{2}{x}\right) \text { or }$	M1: Correct application of product rule	M1A1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{2}+4\right) \frac{3}{2 x^{2}}+2 x\left(\frac{1}{2}-\frac{3}{2 x}\right)$	A1: Correct derivative	
	$=\frac{3}{2}+\frac{6}{x^{2}}+x-3=x-\frac{3}{2}+\frac{6}{x^{2}}$ oe e.g. $\frac{2 x^{3}-3 x^{2}+12}{2 x^{2}}$	M1: Expands and collects terms. Dependent on both previous method marks.	ddM1A1
		A1: $x-\frac{3}{2}+\frac{6}{x^{2}}$ oe and isw Accept $1 x$ or even $1 x^{1}$ but not $\frac{2 x}{2}$ and not x^{0}.	
Way 4 Product	$\left(x^{2}+4\right)(x-3)=x^{3}-3 x^{2}+4 x-12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{3}-3 x^{2}+4 x-12\right) \times-\frac{1}{2}$ M1: Correct application of produc	$-2+\frac{1}{2} x^{-1}\left(3 x^{2}-6 x+4\right)$ rule A1: Correct derivative	M1A1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{2}+\frac{3}{2}-\frac{2}{x}+\frac{6}{x^{2}}+\frac{3 x}{2}-3+\frac{2}{x}=x-\frac{3}{2}+\frac{6}{x^{2}}$ ddM1: Expands and collects terms Dependent on both previous method marks. A1: $x-\frac{3}{2}+\frac{6}{x^{2}}$ oe e.g. $\frac{2 x^{3}-3 x^{2}+12}{2 x^{2}}$ and isw. Accept $1 x$ or even $1 x^{1}$ but not $\frac{2 x}{2}$ and not x^{0}.		ddM1A1

Way 5	$y=\left(\frac{x}{2}+\frac{2}{x}\right)(x-3)$ or $\left(x^{2}+4\right)\left(\frac{1}{2}-\frac{3}{2 x}\right)$	Divides one bracket by $2 x$	M1
	$x^{2} 33 x+2 x^{-1}$	M1: Expands	M1A1
	$2-\frac{3}{2} x+2-6 x$	A1: Correct expression	M1A1
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=x-\frac{3}{2}+\frac{6}{x^{2}} \\ & \text { oe e.g. } \frac{2 x^{3}-3 x^{2}+12}{2 x^{2}} \end{aligned}$	ddM1: $x^{n} \rightarrow x^{n-1}$ or $2 \rightarrow 0$ Dependent on both previous method marks.	ddM1A1
		A1: $x-\frac{3}{2}+\frac{6}{x^{2}}$ oe and isw Accept $1 x$ or even $1 x^{1}$ but not $\frac{2 x}{2}$ If they lose the previous A1 because of an incorrect constant only then allow recovery here for a correct derivative.	

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

